

Welcome to Cait.Rocks’s documentation!

This documentation captures code information, tips, tricks, and other discussions, based around the code for Cait.Rocks.

Contents:

	Database Models
	Recipes

	Ingredients

	Planning

	Model Serializers
	Serializer Base Classes

	Recipe Serializers

	Ingredient Serializers

	Planning Serializers

	Application Programming Interface (API) Endpoints
	Recipes API

	Ingredient API

	Planning API

	Views
	Planning Pages

	Recipe Pages

	Utility Pages

	Notes and Discussions
	Serializing Thoughts and Concerns and Etc

	ForeignKey to Recipe on Ingredient model

	Missing ForeignKey to User on Ingredient model

	Year DropDown Select Box?

	Permissions

	Search Page

Database Models

Contents:

	Recipes

	Ingredients

	Planning

Here is an overview of the model relationships.
This view is simplified because in reality there are many more day??recipe? foreign keys, but they are all the same.
Repeating them all here overly complicated that portion of the graph.
The relationships shown here reveal how rather simple the relationships are:

	Regarding the inter-application relationships, both the calendar and recipe objects have a creator key to User

	Calendar models have foreign keys to Recipe for each day

	Ingredient has a foreign key to a recipe for defining that the ingredient is on that recipe

[image: model relationships]

Recipes

The recipe model defines a recipe by defining new fields for title, directions, etc., defining relationships to User
instances for tracking who owns the recipe, and relying on Ingredient instances to be back referenced to recipes
through foreign keys. The recipe model has a function called get_absolute_url which is used to retrieve the url of the
current recipe’s recipe_detail page.

	
class recipes.models.recipe.Recipe(*args, **kwargs)

	Bases: django.db.models.base.Model

The recipe model captures the heart of this project, defining what a recipe is, including a title, directions, and
ingredients. Title, directions, recipe type, and other scalar fields are defined here, while Ingredients are
defined on the Ingredient model itself, to allow a variable number of them, via foreign key.

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
RECIPE_TYPE_CHOICES = ((u'10', u'Unknown'), (u'30', u'Entree'), (u'35', u'Salad-Entree'), (u'40', u'Soup'), (u'50', u'Salad'), (u'60', u'Drink'), (u'70', u'Dessert'), (u'80', u'Side Dish'), (u'90', u'Sauce/Dressing'), (u'100', u'Seasoning'))

	This tuple of tuples allows referencing display values for each recipe type via enum string values

	
created_date

	The created and modified date fields allow us to automatically track timestamps, internally the field is updated
on the field’s pre_save() method.

	
creator

	The creator field is a foreign key, allowing us to link this recipe to a specific User instance

	
creator_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day01recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day01recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day02recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day02recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day03recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day03recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day04recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day04recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day05recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day05recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day06recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day06recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day07recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day07recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day08recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day08recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day09recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day09recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day10recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day10recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day11recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day11recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day12recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day12recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day13recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day13recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day14recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day14recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day15recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day15recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day16recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day16recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day17recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day17recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day18recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day18recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day19recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day19recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day20recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day20recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day21recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day21recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day22recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day22recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day23recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day23recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day24recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day24recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day25recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day25recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day26recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day26recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day27recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day27recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day28recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day28recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day29recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day29recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day30recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day30recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day31recipe0

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
day31recipe1

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
directions

	The directions field is a free form text field defining the directions for making this

	
get_absolute_url()

	Gets the URL path to this recipe’s nice view page, not the API url!

	Returns

	string

	
get_next_by_created_date(**morekwargs)

	

	
get_next_by_modified_date(**morekwargs)

	

	
static get_poor_recipes(request_user_id=None)

	

	
get_previous_by_created_date(**morekwargs)

	

	
get_previous_by_modified_date(**morekwargs)

	

	
get_recipe_type_display(**morekwargs)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
image

	The image field contains image data to allow showing off the beauty of this recipe

	
ingredients

	Accessor to the related objects manager on the reverse side of a
many-to-one relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager
class built by create_forward_many_to_many_manager() defined below.

	
is_poor()

	

	
modified_date

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
recipe_type

	The recipe type choice field captures the type of recipe

	
title

	The title field is required to be a unique string across all Recipe instances

	
class recipes.models.recipe.RecipeTypes

	Bases: object

This class is a list of strings used to internally reference and store different recipe types

	
DESSERT = u'70'

	

	
DRINK = u'60'

	

	
ENTREE = u'30'

	

	
SALAD = u'50'

	

	
SALAD_ENTREE = u'35'

	

	
SAUCE_DRESSING = u'90'

	

	
SEASONING = u'100'

	

	
SIDE_DISH = u'80'

	

	
SOUP = u'40'

	

	
UNKNOWN = u'10'

	

Ingredients

The ingredient model is a simple model containing member fields that are used to describe the ingredient class
(amount, description, etc.). The members are generally given defaults to allow flexible capabilities.
The only relationship on the ingredient class is a ForeignKey to the Recipe model to allow connecting the
ingredient to a single Recipe instance. (See notes for more detail on that connection)

	
class recipes.models.ingredient.Ingredient(*args, **kwargs)

	Bases: django.db.models.base.Model

This class describes a single ingredient, including amount, measurement, and item description.
The class includes model fields to describe the ingredient, plus one ForeignKey to a Recipe model instance.
The only methods that are added to this model class are the __unicode__ and __str__ methods for representation.

	
AMOUNT_TYPE_CHOICES = (('0', u''), ('10', u'\u215b'), ('30', u'\t\xbc'), ('40', u'\u2153'), ('50', u'\xbd'), ('55', u'\u2154'), ('57', u'\xbe'), ('60', u'1'), ('65', u'1 \xbd'), ('70', u'2'), ('80', u'3'), ('90', u'4'), ('100', u'5'), ('110', u'6'), ('120', u'7'), ('130', u'8'), ('140', u'9'), ('150', u'10'), ('160', u'15'), ('170', u'20'))

	

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
MEASUREMENT_TYPE_CHOICES = (('0', u''), ('5', u'Pinch'), ('10', u'tsp'), ('20', u'Tbsp'), ('30', u'c'), ('40', u'pint'), ('50', u'qt'), ('60', u'liter'), ('70', u'gallon'), ('100', u'oz'), ('110', u'lb'))

	

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
amount

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
get_amount_display(**morekwargs)

	

	
get_measurement_display(**morekwargs)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
item_description

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
measurement

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
objects = <django.db.models.manager.Manager object>

	

	
recipe

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
recipe_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

Planning

The planning model defines the monthly recipe plan. Each day of the month has two recipe placeholder spots. Initially
this was left more general, but the complexity felt through the roof for what I was trying to accomplish. I’ve now got
it down to this relatively small list of fields. I understand the field list is still pretty lengthy, and that adding
more fields to do another recipe each day is a major burden at this point, but I have at least reduced the code required
to reference each recipe field down using some getattr and setattr magic.

	
class recipes.models.planning.Calendar(*args, **kwargs)

	Bases: django.db.models.base.Model

This class describes a full month of data, including the calendar year/month as well as two recipes per day each day
Each recipe field is a ForeignKey to a Recipe and the creator field is a ForeignKey to a User
Contains fields, a __str__ method, and two worker methods for getting full monthly data and recipes for one day

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
YEAR_NUMBER_CHOICES = ((u'2018', u'2018'), (u'2019', u'2019'), (u'2020', u'2020'), (u'2021', u'2021'), (u'2022', u'2022'), (u'2023', u'2023'), (u'2024', u'2024'), (u'2025', u'2025'))

	This tuple of tuples is a map between Year strings to meaningful display options

	
creator

	The creator field is a ForeignKey to a User model instance to keep track of who created this recipe

	
creator_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day01recipe0

	The dayXYrecipeA fields are optional pointers to recipe instances, two per day for 31 days

	
day01recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day01recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day01recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day02recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day02recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day02recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day02recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day03recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day03recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day03recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day03recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day04recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day04recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day04recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day04recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day05recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day05recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day05recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day05recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day06recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day06recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day06recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day06recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day07recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day07recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day07recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day07recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day08recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day08recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day08recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day08recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day09recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day09recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day09recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day09recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day10recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day10recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day10recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day10recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day11recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day11recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day11recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day11recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day12recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day12recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day12recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day12recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day13recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day13recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day13recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day13recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day14recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day14recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day14recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day14recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day15recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day15recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day15recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day15recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day16recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day16recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day16recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day16recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day17recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day17recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day17recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day17recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day18recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day18recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day18recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day18recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day19recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day19recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day19recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day19recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day20recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day20recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day20recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day20recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day21recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day21recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day21recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day21recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day22recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day22recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day22recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day22recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day23recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day23recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day23recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day23recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day24recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day24recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day24recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day24recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day25recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day25recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day25recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day25recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day26recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day26recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day26recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day26recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day27recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day27recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day27recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day27recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day28recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day28recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day28recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day28recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day29recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day29recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day29recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day29recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day30recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day30recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day30recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day30recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day31recipe0

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day31recipe0_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
day31recipe1

	Accessor to the related object on the forward side of a many-to-one or
one-to-one (via ForwardOneToOneDescriptor subclass) relation.

In the example:

class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

child.parent is a ForwardManyToOneDescriptor instance.

	
day31recipe1_id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
get_month_display(**morekwargs)

	

	
get_monthly_data()

	Returns monthly data, including date numbers and recipe ids for each day, if applicable

	Returns

	An array of 4, 5, or 6 weeks, each week is an array of 7 days, each day is a dictionary that has a
date_number key that is the actual date or 0, and recipe0 and recipe1 ids, which point to the recipe
objects in the database (recipe ids may be None if no recipes are selected)

	
get_recipes_for_day_of_month(date_num)

	Returns the recipe ids for the given date num on this calendar instance, if applicable

	Parameters

	date_num – The date of the month, 1-31

	Returns

	List of two ids: [recipe01_id, recipe02_id]; these may be None if no recipes are selected or if
date_num is out of range

	
get_year_display(**morekwargs)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
month

	The month field stores an integer month, and the list of options is conveniently generated from a library

	
nickname

	The nickname field is a personalized string representation of this month

	
objects = <django.db.models.manager.Manager object>

	

	
year

	The year field stores a string reference that is matched to a descriptive year for display

	
class recipes.models.planning.YearNumber

	Bases: object

This class is an enum list of years which was created to conveniently create the drop-down for the user when
creating a new monthly plan. Using a choice list based on these strings allows for easier validation.

	
A = u'2018'

	

	
B = u'2019'

	

	
C = u'2020'

	

	
D = u'2021'

	

	
E = u'2022'

	

	
F = u'2023'

	

	
G = u'2024'

	

	
H = u'2025'

	

Model Serializers

Contents:

	Serializer Base Classes

	Recipe Serializers

	Ingredient Serializers

	Planning Serializers

Serializer Base Classes

This module holds base classes that are derived off of the rest framework serializer base serializers, but with some
additional capabilities added on that are useful in aspects here.

	
class recipes.serializers.base.CreatorBaseSerializer(instance=None, data=<class rest_framework.fields.empty>, **kwargs)

	Bases: rest_framework.serializers.ModelSerializer

This base class provides a method for getting a creator object serialized properly.
This includes creating a serializer method field named creator that should match up with the underlying model
being serialized (i.e. it should also have a creator model field). This also includes writing a get_creator method
that will be used to extract the creator from the model instance.

	
creator = None

	The creator field is a read-only serializer method field. Internally the base class’s to_representation
method will call the get_creator method when serializing the object for output

	
get_creator(created_instance)

	This worker function will get a creator from a class that has that field, or else return a blank string

	Parameters

	created_instance – A Python model object, or really any object that has a creator member variable - not a dict

	Returns

	A string, either the creator name or a blank string

Recipe Serializers

The recipe serializer is the most complex of the serializers, which isn’t saying a lot, as it’s not really that complex.
The recipe serializer is based on the Recipe model, so most operations flow easily without additional code, but there
are a few additions:

	The serializer has an explicit recipe_type field which is used to get the formatted representation of the recipe_type

	There are serializer method fields for getting read-only versions of the creator and absolute_url

	There is an ingredients StringRelatedField, which is a read-only field used to show the ingredients connected with
this recipe. This works easily because the related_name on the ForeignKey defined on the Ingredient model is
“ingredients”.

	
class recipes.serializers.recipe.RecipeSerializer(instance=None, data=<class rest_framework.fields.empty>, **kwargs)

	Bases: recipes.serializers.base.CreatorBaseSerializer

This serializer allows direct serialization for recipe objects, with additional keys as needed

	
class Meta

	
	
fields = ('id', 'title', 'recipe_type', 'creator', 'absolute_url', 'ingredients', 'directions', 'image')

	

	
model

	alias of recipes.models.recipe.Recipe

	
get_absolute_url(recipe_instance)

	This worker function enables us to append the absolute_url field to requests for Recipe model objects
:param recipe_instance: A full recipe instance, we really just need the ID
:return: The fully formed URL for this recipe instance

Ingredient Serializers

The ingredient serializer is a basic model serializer that relies on much of the rest framework magic to minimize the
amount of extra code required. The only additional fields on the serializer are amount and measurement, which
each contain a source argument pointing to the get_FIELD_display autogenerated function. This allows the
serializer to look up the formatted version of the choice fields.

	
class recipes.serializers.ingredient.IngredientSerializer(instance=None, data=<class rest_framework.fields.empty>, **kwargs)

	Bases: rest_framework.serializers.ModelSerializer

This serializer allows direct serialization for ingredient objects, with additional keys for choice fields

	
class Meta

	
	
fields = '__all__'

	

	
model

	alias of recipes.models.ingredient.Ingredient

Planning Serializers

The planning, or calendar, serializer is a very simple model based serializer, with only one additional field.
The creator serializer method field is a read only field used to get the creator represented on the output.

	
class recipes.serializers.planning.CalendarSerializer(instance=None, data=<class rest_framework.fields.empty>, **kwargs)

	Bases: recipes.serializers.base.CreatorBaseSerializer

This serializer allows direct serialization for calendar objects, with additional keys as needed

	
class Meta

	
	
fields = '__all__'

	

	
model

	alias of recipes.models.planning.Calendar

Application Programming Interface (API) Endpoints

Contents:

	Recipes API

	Ingredient API

	Planning API

Recipes API

	
class recipes.api.recipe.RecipeViewSet(**kwargs)

	Bases: rest_framework.mixins.CreateModelMixin, rest_framework.viewsets.ReadOnlyModelViewSet

This class provides the API get and retrieve views for the recipe objects.
The class also uses the CreateModelMixin to provide the POST hook, and the create method is overridden to customize
the creation step. I think this should probably be moved to the serializer at some point

	
create(request, *args, **kwargs)

	The create method is overridden here to allow us to do two things: 1) verify the current user is logged in
before allowing creation of a new calendar, and 2) assigning the creator attribute on the request to the
currently logged in user before passing the data to the serializer. The serializer should then handle
grabbing the creator instance and assigning it to the newly created calendar. I think there is something in
there that would make this easier, like overriding the pre-save on the serializer or something.

	Parameters

	
	request – An http request

	args – Ordered arguments

	kwargs – Keyword arguments

	Returns

	JSONResponse with the created object or a failure message

	
poor_recipes(request)

	

	
queryset

	

	
serializer_class

	alias of recipes.serializers.recipe.RecipeSerializer

Ingredient API

	
class recipes.api.ingredient.IngredientViewSet(**kwargs)

	Bases: rest_framework.viewsets.ReadOnlyModelViewSet

This class provides the API get and retrieve views for the ingredient objects

	
queryset

	

	
serializer_class

	alias of recipes.serializers.ingredient.IngredientSerializer

Planning API

	
class recipes.api.planning.CalendarViewSet(**kwargs)

	Bases: rest_framework.mixins.CreateModelMixin, rest_framework.mixins.DestroyModelMixin, rest_framework.viewsets.ReadOnlyModelViewSet

This class provides the API get and retrieve views for the calendar month objects, plus three workers:
- mine, which is simply a GET call that filters by the current user, to list those available for editing
- monthly_data, which is used to get the bulk data for a whole month
- recipe_id, which is used to put the id onto a

	
create(request, *args, **kwargs)

	This function is a custom handler for the POST call into this endpoint
This function adds in a creator field to the request data before passing
the data to the serializer

	Parameters

	
	request – An HTTP request

	args – Ordered arguments, none are required here

	kwargs – Keyword arguments, none are required here

	Returns

	A JSON response

	
get_queryset()

	This function allows Django to call this model but only retrieve a subset of the database.
In this case, it is down-selecting to only the currently logged-in user

	Returns

	A queryset of Calendar objects belonging to the current user

	
mine(request)

	This function provides an alternate GET endpoint to get a list of the planning months that are owned by the
current user. This is used to list the months available for editing in the planner page. For the months page,
we want to expose them all, read-only of course, so that endpoint should just use the regular list method.

	Returns

	A JSON response with all the calendar objects available for this user

	
monthly_data(request, pk)

	Creates a custom response on the API for getting monthly data, including date numbers, recipes, etc.

	Parameters

	
	request – A full django request object

	pk – The primary key for this particular calendar instance

	Returns

	A JSONResponse with two keys: data and num_weeks.

	num_weeks returns the number of weeks in this month for convenience, either 4, 5 or 6

	data is an array of 4, 5, or 6 items, with each item being weekly data. Each weekly data item is an
array of 7 items, with each item being daily data. Each daily data item is a dictionary containing
keys date_number, recipe0, recipe0title, recipe1, and recipe1title. The date_number key can be “-”
to represent this day does not belong in the current month. The recipe0 and recipe1 keys are ids to
recipe objects in the database. The recipe0title and recipe1title keys are simply the recipe titles
for convenience.

	
recipe_id(request, pk)

	Sets the recipe for this particular calendar date and recipe id
Expects three parameters on the request body: date_num (1-31), daily_recipe_id (0 or 1), and recipe_pk
If recipe_pk is 0, that indicates this recipe item should be cleared

	Parameters

	
	request – A full django request object

	pk – The primary key of the calendar to modify

	Returns

	A JSONResponse object with keys success and message. The status code will also be set accordingly

	
serializer_class

	alias of recipes.serializers.planning.CalendarSerializer

Views

For these views, I tried to wrap them in ViewSets where it made sense, but really, that sorta pushed things in the wrong
direction. These are not views into the API, these are simply page views. In the future, when we have a single-page
Angular-routed view, several of these will not be separate page views, so I won’t be updating them now.

Contents:

	Planning Pages

	Recipe Pages

	Utility Pages

Planning Pages

	
class recipes.views.planning_pages.MonthViewSet(**kwargs)

	Bases: rest_framework.viewsets.ViewSet

This view set provides two page views, a “list” view which shows all the months and a “detail”
view which shows just a single month

	
list(request)

	Retrieves a list of monthly plans and renders them in a template
:param request: An http request object
:return: Rendered HTML

	
retrieve(request, pk=None)

	Retrieves a single monthly plan and renders it in a template
:param request: An http request object
:param pk: The pk for the month of interest
:return: Rendered HTML

	
class recipes.views.planning_pages.PlannerViewSet(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, rest_framework.viewsets.ViewSet

This view set provides a single view into the planner page. That page is fully dynamic through Angular XHR calls
so no context needs to be rendered.

	
list(request)

	

Recipe Pages

	
class recipes.views.recipe_pages.RecipeViewSet(**kwargs)

	Bases: rest_framework.viewsets.ViewSet

This view set provides two page views, a “list” view which shows all the recipes and a “detail”
view which shows just a single recipe

	
list(request)

	Retrieves a list of recipes and renders them in a template

	Parameters

	request – An http request object

	Returns

	Rendered HTML

	
retrieve(request, pk=None)

	Retrieves a single recipe and renders it in a template

	Parameters

	
	request – An http request object

	pk – The pk for the recipe of interest

	Returns

	Rendered HTML

Utility Pages

These views are simple standalone pages that are not inside classes, which is appropriate for them.

	
recipes.views.utility_pages.handle404(request)

	This view is called by Django when the a GET request is made to a page that does not exist.
It renders a static page but isn’t amenable to making into a simple TemplateView because it must return a 404

	Parameters

	request – An HTTP request

	Returns

	A rendered HTML response

	
recipes.views.utility_pages.server_version_data(request)

	This function provides the “About” page response, including server information

	Parameters

	request – An HTTP request

	Returns

	A rendered HTML response

Notes and Discussions

I will use this as a place to drop interesting things I have found during development, or use it as a place to
post information for discussions or whatever.

Contents:

	Serializing Thoughts and Concerns and Etc

	ForeignKey to Recipe on Ingredient model

	Missing ForeignKey to User on Ingredient model

	Year DropDown Select Box?

	Permissions

Serializing Thoughts and Concerns and Etc

I would really like to wrap my head around the best use of serializers, but I’m not quite there yet.
One thing I have noted from the inter webs is that people say we should have “light” views, and “heavy” serializers.
I know this means that when we need to start customizing the output/processing, we should focus on adding to the
serializers, not the views, as much as possible. But sometimes, it seems way easier to just override the create method
on the view, for example, because we need access to the request.user. I’m sure there is a better way to do it through
overriding something in the serializer, but I’m not sure of it yet.

ForeignKey to Recipe on Ingredient model

The ingredient model class has a ForeignKey member to a Recipe model instance. This means the ingredient is assigned
to a single recipe class forever. This is a bit silly, as an ingredient should just be standalone and potentially
applied to multiple recipes. Right? Wait no. That could be bad. If an ingredient gets altered in one recipe, you
don’t want it being altered in all the recipes that reference it. OK, it’s good. Good to talk things through. Thanks
Mr. Duck.

Missing ForeignKey to User on Ingredient model

The ingredient model does not have a foreign key to a User. This seems like a problem given all the other
ownership stuff we’ve put in. I think we need to add it. It will probably be a super light addition once I figure
out the serializer stuff.

Year DropDown Select Box?

Right now we have the year field on the planning class, which is a choice field based on a specific list of years.
This is good. However, in the HTML, we still hardwire the same number of years. I think I need to figure out how to
properly generate a form out of the month/year/title fields on the planning class. Then the form will automatically
use the list created in Python. My concern is that it will be difficult to integrate Angular stuff in there if we
start going down that path, so that’s something to consider.

Permissions

I would like to take some time to dig deep into the permissions around my models and views. I want to make sure that
only authors of recipes can modify their own (except super users of course). Some of this will come from information
on the rest framework tutorial here: http://www.django-rest-framework.org/tutorial/4-authentication-and-permissions/.

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cait.Rocks’s documentation!

 		
 Database Models

 		
 Recipes

 		
 Ingredients

 		
 Planning

 		
 Model Serializers

 		
 Serializer Base Classes

 		
 Recipe Serializers

 		
 Ingredient Serializers

 		
 Planning Serializers

 		
 Application Programming Interface (API) Endpoints

 		
 Recipes API

 		
 Ingredient API

 		
 Planning API

 		
 Views

 		
 Planning Pages

 		
 Recipe Pages

 		
 Utility Pages

 		
 Notes and Discussions

 		
 Serializing Thoughts and Concerns and Etc

 		
 ForeignKey to Recipe on Ingredient model

 		
 Missing ForeignKey to User on Ingredient model

 		
 Year DropDown Select Box?

 		
 Permissions

_static/ajax-loader.gif

_images/project_models.png
recipes

{cis (ingredients) fdayo recipe 1 (day0 recipe1) ayo recipeo (dayorrecipeo)
reator|(calndar)

Ingredient

\m:tnv (recipes)

django.contrb.auth

